The Fauser Monoid

Nick Ham

Supervisors: Des FitzGerald \& Peter Jarvis
University of Tasmania

December 4, 2014

Diagrams

Let $k \in \mathbb{Z}^{>0}, K=\{1, \ldots, k\}$ and $K^{\prime}=\left\{1^{\prime}, \ldots, k^{\prime}\right\}$.
A diagram is a partition of $K \cup K^{\prime}$.

Example

Take $k=8$ and consider
$\left\{\{1\},\left\{2,1^{\prime}\right\},\left\{3,4,7,7^{\prime}, 8^{\prime}\right\},\{5,6\},\left\{8,5^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}, 4^{\prime}\right\}\right\}$.

- A diagram is planar if the edges can be drawn without crossing inside the rectangle bounding the vertices;
- Transversal components are edges that connect vertices in both rows;
- The rank of a diagram is the number of transversals it has.

Partition Monoid \mathcal{P}_{k}

Given two diagrams $a, b \in \mathcal{P}_{k}$, their product $a b$ is formed pictorially as follows:

- place a on top of b;
- remove the middle dots and stranded loops; and
- clip loose ends and collapse remaining loops.

The monoid of diagrams under this product is called the partition monoid \mathcal{P}_{k}.

\mathcal{P}_{k} is a regular *-semigroup

Pictorially we obtain d^{*} by flipping d upside down.
Example

For each $d \in \mathcal{P}_{k}$:

- $d^{* *}=d$ (${ }^{*}$ is an involution);
- $(d e)^{*}=e^{*} d^{*}$ (* is an anti-homomorphism); and
- $d d^{*} d=d$ (regularity condition).

Jones Monoid \mathcal{J}_{k} and Brauer Monoid \mathcal{B}_{k}

- Jones Monoid \mathcal{J}_{k} consists of all planar matchings of $K \cup K^{\prime}$;
- Brauer Monoid \mathcal{B}_{k} consists of all matchings of $K \cup K^{\prime}$.

Examples

Diapsis Generators

Example

When $k=4$ we have 3 diapsis generators:

- \mathcal{J}_{k} is generated by diapsis generators (and id \mathcal{P}_{k});
- \mathcal{B}_{k} is generated by diapsis generators and S_{k}.

Triapsis Generators

Consider what happens when we replace the diapses in the generators of \mathcal{B}_{k} and \mathcal{J}_{k} with triapses.

Example

When $k=5$ we have 3 triapsis generators:

Obvious First Question: What diagrams are generated?

Triapsis Monoid \mathcal{T}_{k} and Fauser Monoid \mathcal{F}_{k}

The Triapsis Monoid \mathcal{T}_{k} consists of $\operatorname{id}_{\mathcal{P}_{k}}$ and $d \in \mathcal{P}_{k}$ where:

- d is planar;
- there's at least one triapsis connecting consecutive points along the upper points, similarly along the lower points;
- for each edge $e \in d,|U(e)| \equiv|L(e)|(\bmod 3)$.

The Fauser Monoid \mathcal{F}_{k} consists of $\underline{S_{k}}$ and $d \in \mathcal{P}_{k}$ where:

- there's at least one triapsis along the upper points, similarly along the lower points;
- for each edge $e \in d,|U(e)| \equiv|L(e)|(\bmod 3)$.

Characterising the elements of $\mathcal{T}_{k}\left(\left\langle g_{1}, \ldots, g_{k-2}, \operatorname{id}_{\mathcal{P}_{k}}\right\rangle=\mathcal{T}_{k}\right)$

$(\Rightarrow:)$ When showing $\left\langle g_{1}, \ldots, g_{k-2}\right.$, id $\left._{\mathcal{P}_{k}}\right\rangle \leq \mathcal{T}_{k}$, we show that $\left.\overline{\mathcal{T}_{k}\left\langle g_{1}\right.}, \ldots, g_{k-2}\right\rangle \subseteq \mathcal{T}_{k}$.

$(\Leftarrow:)$ To show that $\mathcal{T}_{k} \leq\left\langle g_{1}, \ldots, g_{k-2}\right.$, id $\left._{\mathcal{P}_{k}}\right\rangle$, we show how to decompose a diagram $d \in \mathcal{T}_{k}$ into a product of generators. We begin with $d=u t l$, then decompose u, t and l.

Terminology Complications

- Triapsis Monoid is a better description of our generators than the elements of \mathcal{T}_{k};
- Can't call \mathcal{T}_{k} the planar version of \mathcal{F}_{k}; and

- I'm not overly fond of referring to \mathcal{F}_{k} as the symmetric version of \mathcal{T}_{k}, plus if we can't think of descriptive names then we want to call \mathcal{F}_{k} the Fauser monoid.

Why Fauser?

Cardinality of \mathcal{F}_{k}

Let

- $N\left(n, t_{1}, \ldots, t_{k}\right)$ be the number of ways to place t_{1} triapses, \ldots, $t_{k} 3 k$-apses along n points;
- $N(n, t)=\Sigma_{3 t_{1}+\ldots+3 k t_{k}=t: t_{1}>0} N\left(n, t_{1}, \ldots, t_{k}\right)$ be the number of ways to use t of n dots with non-transversals; and
- $T\left(n_{1}, n_{2}\right)$ be the number of ways to feasibly connect n_{1} points to n_{2} points with just (feasible) transversals.
We have the following recurrence relations for N and T :
- $N(n, 0, \ldots, 0)=1$;
- $N\left(n, t_{1}, \ldots, t_{k}\right)=$ $N\left(n-1, t_{1}, \ldots, t_{k}\right)+\sum_{i: t_{i}>0}\binom{n-1}{3 i-1} N\left(n-3 i, t_{1}, \ldots, t_{i}-1, \ldots, t_{k}\right)$;
- $T(0,0)=1, T\left(n_{1}, n_{2}\right)=T\left(n_{2}, n_{1}\right), T\left(n_{1}, 0\right)=0, n_{1}>0$;

$$
\left|\mathcal{F}_{k}\right|=n!+\sum_{u=1}^{\lfloor n / 3\rfloor} \sum_{l=1}^{\lfloor n / 3\rfloor} N(n, 3 u) N(n, 3 /) T(n-3 u, n-3 l) .
$$

Patterns

A pattern p is a partition of $K\left(\right.$ or $\left.K^{\prime}\right)$ with a two-tone vertex colouring, where the colour of a vertex indicates whether the edge connected to it is a transversal or non-transversal component.
Example

Hence we can break a diagram $d \in \mathcal{P}_{k}$ into its upper pattern $U(d)$ and lower pattern $L(d)$.

\mathcal{T}_{k}-admissibility and \mathcal{T}_{k}-compatibility

- a pattern p is \mathcal{T}_{k}-admissible if $\exists d \in \mathcal{T}_{k}$ with $U(d)=p$; and
- \mathcal{T}_{k}-admissible p, q are \mathcal{T}_{k}-compatible if $\exists d \in \mathcal{T}_{k}$ with $U(d)=p$ and $L(d)=q$.
(d is unique, which we denote by $\delta(p, q)$)
Properties
- \mathcal{T}_{k}-compatibility is an equivalence relation; and
- $\delta(p, q) \delta(q, r)=\delta(p, r)$.

Characterising \mathcal{T}_{k}-admissibility and \mathcal{T}_{k}-compatibility

A pattern p is \mathcal{T}_{k}-admissible iff:

- it is planar;
- it has at least one triapsis; and
- each non-transversal component has cardinality divisible by 3 .
\mathcal{T}_{k}-admissible patterns p, q are \mathcal{T}_{k}-compatible iff:
- $\operatorname{rank}(p)=\operatorname{rank}(q)$; and
- the cardinalities of matched transversal components are congruent mod 3.

Example

Green's Relations

Definition

For $a, b \in S$:

- $\mathcal{R}=\left\{(a, b) \in S^{2}: a S^{1}=b S^{1}\right\} ;$
- $\mathcal{L}=\left\{(a, b) \in S^{2}: S^{1} a=S^{1} b\right\} ;$
- $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$; and
- $\mathcal{J}=\left\{(a, b) \in S^{2}: S^{1} a S^{1}=S^{1} b S^{1}\right\}$;

Theorem (Howie)
If $T \leq S$ is regular then Green's \mathcal{L}, \mathcal{R} and \mathcal{H} relations are just their respective restrictions on T. le. $\mathcal{L}^{T}=\mathcal{L}^{S} \cap T^{2}$.

Green's Relations on \mathcal{P}_{k}

Theorem (Wilcox)
For $a, b \in \mathcal{P}_{k}$:

- $a \mathcal{R} b$ iff $U(a)=U(b)$;
- $a \mathcal{L} b$ iff $L(a)=L(b)$;
- aHb iff $U(a)=U(b)$ and $L(a)=L(b)$; and
- $a \mathcal{J} b$ iff $\operatorname{rank}(a)=\operatorname{rank}(b)$.

Green's \mathcal{J} Relation on \mathcal{T}_{k}

Theorem

For $a, b \in \mathcal{T}_{k}$, $a \mathcal{J} b$ iff ' $U(a)$ and $U(b)$ are \mathcal{T}_{k}-compatible'.
$(\Rightarrow:)$ 'rank $(a)=\operatorname{rank}(a b)^{\prime} \Rightarrow{ }^{\prime} U(a)$ and $U(a b)$ are \mathcal{T}_{k}-compatible'.

$$
\begin{aligned}
\underline{(\Leftarrow:)}[\delta(U(b), U(a)) \cdot a] \cdot \delta(L(a), L(b)) & =\delta(U(b), L(a)) \cdot \delta(L(a), L(b)) \\
& =\delta(U(b), L(b)) \\
& =b
\end{aligned}
$$

Presentation of \mathcal{T}_{k}

Presentation of \mathcal{T}_{k}

Diagram Algebras

- For $\beta \in \mathbb{C}$, the partition algebra $\mathbb{C}^{\beta}\left[\mathcal{P}_{k}\right]$ is the semigroup algebra $\mathbb{C}\left[\mathcal{P}_{k}\right]$ with multiplication $d * d^{\prime}=\beta^{r}\left(d d^{\prime}\right)$ where r is the number of blocks removed when forming $d d^{\prime}$.

$=\beta^{2}$

- $\mathbb{C}^{\beta}\left[\mathcal{B}_{k}\right]$ and $\mathbb{C}^{\beta}\left[\mathcal{F}_{k}\right]$ are defined analogously.

Schur-Weyl Duality

Schur-Weyl duality tells us (amongst other things) that:

- $\mathrm{GL}_{n}(\mathbb{C})$ and $\mathbb{C}\left[S_{k}\right]$ have commuting actions on $V^{\otimes k}$;
- Each action generates the full centraliser of the other le. $\operatorname{End}_{\mathrm{GL}_{n}(\mathbb{C})}\left(V^{\otimes k}\right)=\mathbb{C}\left[S_{k}\right]$ and $\operatorname{End}_{\mathbb{C}\left[S_{k}\right]}\left(V^{\otimes k}\right)=\mathrm{GL}_{n}(\mathbb{C})$.
A number of analogous dualities are known, for example between:
- $\mathrm{O}_{n}(\mathbb{C}) \subseteq \mathrm{GL}_{n}(\mathbb{C})$ and $\mathbb{C}^{\beta}\left[\mathcal{B}_{k}\right] \supseteq \mathbb{C}\left[S_{k}\right]$ (Brauer);
- $S_{n} \subseteq O_{n}$ and $\mathbb{C}^{\beta}\left[\mathcal{P}_{k}\right] \supseteq \mathbb{C}^{\beta}\left[\mathcal{B}_{k}\right]$ (Martin);
- $I S_{n}$ and $\mathbb{C}\left[I_{k}^{*}\right]$ (Kudryavtseva \& Mazorchuk).

We are hoping to find a subgroup of $G L_{n}(\mathbb{C})$ which is in a Schur-Weyl type duality with $\mathbb{C}^{\beta}\left[\mathcal{F}_{k}\right]$.

Suggestions and/or Questions?

