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Diagrams

Let k ∈ Z
>0, K = {1, ..., k} and K ′ = {1′, ..., k ′}.

A diagram is a partition of K ∪ K ′.

Example

Take k = 8 and consider
{{1}, {2, 1′}, {3, 4, 7, 7′ , 8′}, {5, 6}, {8, 5′, 6′}, {2′, 3′, 4′}}.
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◮ A diagram is planar if the edges can be drawn without
crossing inside the rectangle bounding the vertices;

◮ Transversal components are edges that connect vertices in
both rows;

◮ The rank of a diagram is the number of transversals it has.



Partition Monoid Pk

Given two diagrams a, b ∈ Pk , their product ab is formed
pictorially as follows:
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◮ place a on top of b;

◮ remove the middle dots and stranded loops; and

◮ clip loose ends and collapse remaining loops.

The monoid of diagrams under this product is called the partition

monoid Pk .



Pk is a regular ∗-semigroup

Pictorially we obtain d∗ by flipping d upside down.
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For each d ∈ Pk :

◮ d∗∗ = d (∗ is an involution);

◮ (de)∗ = e∗d∗ (∗ is an anti-homomorphism); and

◮ dd∗d = d (regularity condition).



Jones Monoid Jk and Brauer Monoid Bk

◮ Jones Monoid Jk consists of all planar matchings of K ∪ K ′;

◮ Brauer Monoid Bk consists of all matchings of K ∪ K ′.
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Diapsis Generators

Example

When k = 4 we have 3 diapsis generators:
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◮ Jk is generated by diapsis generators (and idPk
);

◮ Bk is generated by diapsis generators and Sk .



Triapsis Generators

Consider what happens when we replace the diapses in the
generators of Bk and Jk with triapses.

Example

When k = 5 we have 3 triapsis generators:
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Obvious First Question: What diagrams are generated?



Triapsis Monoid Tk and Fauser Monoid Fk

The Triapsis Monoid Tk consists of idPk
and d ∈ Pk where:

◮ d is planar;
◮ there’s at least one triapsis connecting consecutive points

along the upper points, similarly along the lower points;
◮ for each edge e ∈ d , |U(e)| ≡ |L(e)| (mod 3).
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The Fauser Monoid Fk consists of Sk and d ∈ Pk where:
◮ there’s at least one triapsis along the upper points, similarly

along the lower points;
◮ for each edge e ∈ d , |U(e)| ≡ |L(e)| (mod 3).

b

b

bb b

bb b

b

b

b

bb b b

bb bb

b

b

bb b b

bb b b

b



Characterising the elements of Tk (〈g1, ..., gk−2, idPk
〉 = Tk)

(⇒:) When showing 〈g1, ..., gk−2 , idPk
〉 ≤ Tk , we show that

Tk〈g1, ..., gk−2〉 ⊆ Tk .
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(⇐:) To show that Tk ≤ 〈g1, ..., gk−2, idPk
〉, we show how to

decompose a diagram d ∈ Tk into a product of generators.
We begin with d = utl , then decompose u, t and l .



Terminology Complications

◮ Triapsis Monoid is a better description of our generators than
the elements of Tk ;

◮ Can’t call Tk the planar version of Fk ; and
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◮ I’m not overly fond of referring to Fk as the symmetric
version of Tk , plus if we can’t think of descriptive names then
we want to call Fk the Fauser monoid.

Why Fauser?



Cardinality of Fk

Let
◮ N(n, t1, ..., tk) be the number of ways to place t1 triapses, ...,

tk 3k-apses along n points;
◮ N(n, t) = Σ3t1+...+3ktk=t:t1>0N(n, t1, ..., tk ) be the number of

ways to use t of n dots with non-transversals; and
◮ T (n1, n2) be the number of ways to feasibly connect n1 points

to n2 points with just (feasible) transversals.

We have the following recurrence relations for N and T :

◮ N(n, 0, ..., 0) = 1;

◮ N(n, t1, ..., tk) =
N(n − 1, t1, ..., tk) + Σi :ti >0

(
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)

N(n − 3i , t1, ..., ti − 1, ..., tk);

◮ T (0, 0) = 1, T (n1, n2) = T (n2, n1), T (n1, 0) = 0, n1 > 0;

◮ T (n1, n2) = Σ(n′
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|Fk | = n! + Σ
⌊n/3⌋
u=1

Σ
⌊n/3⌋
l=1

N(n, 3u)N(n, 3l)T (n − 3u, n − 3l).



Patterns

A pattern p is a partition of K (or K ′) with a two-tone vertex
colouring, where the colour of a vertex indicates whether the edge
connected to it is a transversal or non-transversal component.
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Hence we can break a diagram d ∈ Pk into its upper pattern

U(d) and lower pattern L(d).



Tk-admissibility and Tk-compatibility

◮ a pattern p is Tk-admissible if ∃ d ∈ Tk with U(d) = p; and

◮ Tk-admissible p, q are Tk-compatible if ∃ d ∈ Tk with
U(d) = p and L(d) = q.
(d is unique, which we denote by δ(p, q))

Properties

◮ Tk-compatibility is an equivalence relation; and

◮ δ(p, q)δ(q, r) = δ(p, r).



Characterising Tk-admissibility and Tk-compatibility

A pattern p is Tk -admissible iff:

◮ it is planar;

◮ it has at least one triapsis; and

◮ each non-transversal component has cardinality divisible by 3.

Tk -admissible patterns p, q are Tk-compatible iff:

◮ rank(p) = rank(q); and

◮ the cardinalities of matched transversal components are
congruent mod 3.
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Green’s Relations

Definition
For a, b ∈ S:

◮ R = {(a, b) ∈ S2 : aS1 = bS1};

◮ L = {(a, b) ∈ S2 : S1a = S1b};

◮ H = L ∩ R; and

◮ J = {(a, b) ∈ S2 : S1aS1 = S1bS1};

Theorem (Howie)

If T ≤ S is regular then Green’s L, R and H relations are just
their respective restrictions on T . Ie. LT = LS ∩ T 2.



Green’s Relations on Pk

Theorem (Wilcox)

For a, b ∈ Pk :

◮ aRb iff U(a) = U(b);

◮ aLb iff L(a) = L(b);

◮ aHb iff U(a) = U(b) and L(a) = L(b); and

◮ aJ b iff rank(a) = rank(b).



Green’s J Relation on Tk

Theorem
For a, b ∈ Tk , aJ b iff ‘U(a) and U(b) are Tk -compatible’.
(⇒:) ‘rank(a) = rank(ab)’ ⇒ ‘U(a) and U(ab) are Tk -compatible’.

(⇐:)[δ(U(b), U(a)).a].δ(L(a), L(b)) = δ(U(b), L(a)).δ(L(a), L(b))

= δ(U(b), L(b))

= b

b

b

b

bb b b

bb b bbb

bbb

b bb b b bbb

b bb b b bbb

b bb b b bbb

b bb b b bbb

=

b

δ(U(b), U(a)))

δ(L(a), L(b))

a



Presentation of Tk

b b b

b b b

a2 = a

b b b b

b b b b

aba = a
(bab = b)

b b b b b

b b b b b

abca = aca = acba

b b b b b b

b b b b b b

b b b b b b

b b b b b b

ad = da abdca = acdba



Presentation of Tk
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Diagram Algebras

◮ For β ∈ C, the partition algebra C
β[Pk ] is the semigroup

algebra C[Pk ] with multiplication d ∗ d ′ = βr (dd ′) where r is
the number of blocks removed when forming dd ′.
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◮ C
β[Bk ] and C

β[Fk ] are defined analogously.



Schur-Weyl Duality

Schur-Weyl duality tells us (amongst other things) that:

◮ GLn(C) and C[Sk ] have commuting actions on V ⊗k ;

◮ Each action generates the full centraliser of the other
Ie. EndGLn(C)(V

⊗k) = C[Sk ] and EndC[Sk ](V
⊗k) = GLn(C).

A number of analogous dualities are known, for example between:

◮ On(C) ⊆ GLn(C) and C
β[Bk ] ⊇ C[Sk ] (Brauer);

◮ Sn ⊆ On and C
β[Pk ] ⊇ C

β[Bk ] (Martin);

◮ ISn and C[I∗
k
] (Kudryavtseva & Mazorchuk).

We are hoping to find a subgroup of GLn(C) which is in a
Schur-Weyl type duality with C

β[Fk ].



Suggestions and/or Questions?


