The Fauser Monoid

Nick Ham

Supervisors: Des FitzGerald & Peter Jarvis

University of Tasmania

December 4, 2014

Diagrams

Let $k \in \mathbb{Z}^{>0}$, $K = \{1, ..., k\}$ and $K' = \{1', ..., k'\}$. A **diagram** is a partition of $K \cup K'$.

Example

Take k = 8 and consider {{1}, {2,1'}, {3,4,7,7',8'}, {5,6}, {8,5',6'}, {2',3',4'}}.

- A diagram is planar if the edges can be drawn without crossing inside the rectangle bounding the vertices;
- Transversal components are edges that connect vertices in both rows;
- The **rank** of a diagram is the number of transversals it has.

Partition Monoid \mathcal{P}_k

Given two diagrams $a, b \in \mathcal{P}_k$, their product ab is formed pictorially as follows:

- place a on top of b;
- remove the middle dots and stranded loops; and
- clip loose ends and collapse remaining loops.

The monoid of diagrams under this product is called the **partition** monoid \mathcal{P}_k .

\mathcal{P}_k is a regular *-semigroup

Pictorially we obtain d^* by flipping d upside down.

Example

For each $d \in \mathcal{P}_k$:

- $(de)^* = e^*d^*$ (* is an anti-homomorphism); and
- $dd^*d = d$ (regularity condition).

Jones Monoid \mathcal{J}_k and Brauer Monoid \mathcal{B}_k

- ▶ Jones Monoid \mathcal{J}_k consists of all planar matchings of $K \cup K'$;
- Brauer Monoid \mathcal{B}_k consists of all matchings of $K \cup K'$.

Examples

Diapsis Generators

Example

When k = 4 we have 3 **diapsis generators**:

- \mathcal{J}_k is generated by diapsis generators (and $\mathrm{id}_{\mathcal{P}_k}$);
- \mathcal{B}_k is generated by diapsis generators and S_k .

Triapsis Generators

Consider what happens when we replace the diapses in the generators of \mathcal{B}_k and \mathcal{J}_k with triapses.

Example

When k = 5 we have 3 triapsis generators:

Obvious First Question: What diagrams are generated?

Triapsis Monoid \mathcal{T}_k and Fauser Monoid \mathcal{F}_k

The **Triapsis Monoid** \mathcal{T}_k consists of $id_{\mathcal{P}_k}$ and $d \in \mathcal{P}_k$ where:

- ► *d* is planar;
- there's at least one triapsis connecting consecutive points along the upper points, similarly along the lower points;
- ▶ for each edge $e \in d$, $|U(e)| \equiv |L(e)| \pmod{3}$.

The **Fauser Monoid** \mathcal{F}_k consists of $\underline{S_k}$ and $d \in \mathcal{P}_k$ where:

- there's at least one triapsis along the upper points, similarly along the lower points;
- ▶ for each edge $e \in d$, $|U(e)| \equiv |L(e)| \pmod{3}$.

Characterising the elements of \mathcal{T}_k ($\langle g_1, ..., g_{k-2}, id_{\mathcal{P}_k} \rangle = \mathcal{T}_k$)

 $\underbrace{(\Rightarrow:)}{\mathcal{T}_k\langle g_1,...,g_{k-2},\mathsf{id}_{\mathcal{P}_k}\rangle} \leq \mathcal{T}_k, \text{ we show that } \\ \overline{\mathcal{T}_k\langle g_1,...,g_{k-2}\rangle} \subseteq \mathcal{T}_k.$

<u>(\Leftarrow :</u>) To show that $\mathcal{T}_k \leq \langle g_1, ..., g_{k-2}, id_{\mathcal{P}_k} \rangle$, we show how to decompose a diagram $d \in \mathcal{T}_k$ into a product of generators. We begin with d = utl, then decompose u, t and l.

Terminology Complications

- Triapsis Monoid is a better description of our generators than the elements of T_k ;
- Can't call \mathcal{T}_k the planar version of \mathcal{F}_k ; and

► I'm not overly fond of referring to *F_k* as the <u>symmetric</u> version of *T_k*, plus if we can't think of descriptive names then we want to call *F_k* the Fauser monoid.

Why Fauser?

Cardinality of \mathcal{F}_k

Let

- N(n, t₁, ..., t_k) be the number of ways to place t₁ triapses, ..., t_k 3k-apses along n points;
- ► $N(n, t) = \sum_{3t_1+...+3kt_k=t:t_1>0} N(n, t_1, ..., t_k)$ be the number of ways to use t of n dots with non-transversals; and
- ► T(n₁, n₂) be the number of ways to feasibly connect n₁ points to n₂ points with just (feasible) transversals.

We have the following recurrence relations for N and T:

•
$$N(n, 0, ..., 0) = 1;$$

•
$$N(n, t_1, ..., t_k) = N(n-1, t_1, ..., t_k) + \sum_{i:t_i>0} {n-1 \choose 3i-1} N(n-3i, t_1, ..., t_i-1, ..., t_k);$$

- ► T(0,0) = 1, $T(n_1, n_2) = T(n_2, n_1)$, $T(n_1, 0) = 0$, $n_1 > 0$;
- $T(n_1, n_2) = \Sigma_{(n'_1, n'_2) \le (n_1, n_2): n'_1 \equiv n'_2 \pmod{3} \binom{n_1 1}{n'_1 1} \binom{n_2}{n'_2} T(n_1 n'_1, n_2 n'_2).$

$$|\mathcal{F}_k| = n! + \sum_{u=1}^{\lfloor n/3 \rfloor} \sum_{l=1}^{\lfloor n/3 \rfloor} N(n, 3u) N(n, 3l) T(n - 3u, n - 3l).$$

Patterns

A **pattern** p is a partition of K (or K') with a two-tone vertex colouring, where the colour of a vertex indicates whether the edge connected to it is a transversal or non-transversal component.

Example

Hence we can break a diagram $d \in \mathcal{P}_k$ into its **upper pattern** U(d) and **lower pattern** L(d).

\mathcal{T}_k -admissibility and \mathcal{T}_k -compatibility

- ▶ a pattern *p* is \mathcal{T}_k -admissible if $\exists d \in \mathcal{T}_k$ with U(d) = p; and
- *T_k*-admissible *p*, *q* are *T_k*-compatible if ∃ *d* ∈ *T_k* with *U*(*d*) = *p* and *L*(*d*) = *q*.
 (*d* is unique, which we denote by δ(*p*, *q*))

Properties

- T_k -compatibility is an equivalence relation; and
- $\delta(p,q)\delta(q,r) = \delta(p,r).$

Characterising \mathcal{T}_k -admissibility and \mathcal{T}_k -compatibility

- A pattern p is \mathcal{T}_k -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
- each non-transversal component has cardinality divisible by 3. \mathcal{T}_k -admissible patterns p, q are \mathcal{T}_k -compatible iff:
 - rank(p) = rank(q); and
 - the cardinalities of *matched* transversal components are congruent mod 3.

Example

Green's Relations

$\begin{array}{l} \mbox{Definition} \\ \mbox{For } a,b \in S: \\ \bullet \ \mathcal{R} = \{(a,b) \in S^2 : aS^1 = bS^1\}; \\ \bullet \ \mathcal{L} = \{(a,b) \in S^2 : S^1a = S^1b\}; \\ \bullet \ \mathcal{H} = \mathcal{L} \cap \mathcal{R}; \mbox{ and } \\ \bullet \ \mathcal{J} = \{(a,b) \in S^2 : S^1aS^1 = S^1bS^1\}; \end{array}$

Theorem (Howie)

If $T \leq S$ is regular then Green's \mathcal{L} , \mathcal{R} and \mathcal{H} relations are just their respective restrictions on T. Ie. $\mathcal{L}^T = \mathcal{L}^S \cap T^2$.

Green's Relations on \mathcal{P}_k

Theorem (Wilcox)

For $a, b \in \mathcal{P}_k$:

- $a\mathcal{R}b$ iff U(a) = U(b);
- $a\mathcal{L}b$ iff L(a) = L(b);
- $a\mathcal{H}b$ iff U(a) = U(b) and L(a) = L(b); and

•
$$a\mathcal{J}b$$
 iff $rank(a) = rank(b)$.

Green's \mathcal{J} Relation on \mathcal{T}_k

Theorem For $a, b \in \mathcal{T}_k$, $a\mathcal{J}b$ iff 'U(a) and U(b) are \mathcal{T}_k -compatible'. (\Rightarrow :) 'rank(a) = rank(ab)' \Rightarrow 'U(a) and U(ab) are \mathcal{T}_k -compatible'.

$$\underline{(\leftarrow:)}[\delta(U(b), U(a)).a].\delta(L(a), L(b)) = \delta(U(b), L(a)).\delta(L(a), L(b))$$
$$= \delta(U(b), L(b))$$
$$= b$$

Presentation of \mathcal{T}_k

Presentation of \mathcal{T}_k

Diagram Algebras

For β ∈ C, the partition algebra C^β[P_k] is the semigroup algebra C[P_k] with multiplication d ∗ d' = β^r(dd') where r is the number of blocks removed when forming dd'.

• $\mathbb{C}^{\beta}[\mathcal{B}_k]$ and $\mathbb{C}^{\beta}[\mathcal{F}_k]$ are defined analogously.

Schur-Weyl Duality

Schur-Weyl duality tells us (amongst other things) that:

- $\operatorname{GL}_n(\mathbb{C})$ and $\mathbb{C}[S_k]$ have commuting actions on $V^{\otimes k}$;
- ► Each action generates the full centraliser of the other le. End_{GL_n(ℂ)}(V^{⊗k}) = ℂ[S_k] and End_{ℂ[S_k]}(V^{⊗k}) = GL_n(ℂ).

A number of analogous dualities are known, for example between:

- $O_n(\mathbb{C}) \subseteq GL_n(\mathbb{C})$ and $\mathbb{C}^{\beta}[\mathcal{B}_k] \supseteq \mathbb{C}[S_k]$ (Brauer);
- $S_n \subseteq O_n$ and $\mathbb{C}^{\beta}[\mathcal{P}_k] \supseteq \mathbb{C}^{\beta}[\mathcal{B}_k]$ (Martin);
- ▶ IS_n and $\mathbb{C}[I_k^*]$ (Kudryavtseva & Mazorchuk).

We are hoping to find a subgroup of $GL_n(\mathbb{C})$ which is in a Schur-Weyl type duality with $\mathbb{C}^{\beta}[\mathcal{F}_k]$.

Suggestions and/or Questions?